o

geotrellis.vector.interpolation

NonLinearSemivariogram

object NonLinearSemivariogram

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. NonLinearSemivariogram
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. def apply(pts: Array[PointFeature[Double]], maxDistanceBandwidth: Double, binMaxCount: Int, model: ModelType): Semivariogram

    pts

    Points to be modelled and fitted

    maxDistanceBandwidth

    the maximum inter-point distance to be captured into the empirical semivariogram used for fitting

    binMaxCount

    the maximum number of bins in the empirical variogram

    model

    The ModelType being fitted into

    returns

    Semivariogram

  2. def apply(range: Double, sill: Double, model: ModelType): Semivariogram
  3. def apply(range: Double, sill: Double, nugget: Double, model: ModelType): Semivariogram

    range

    Range (Flattening point) of Semivariogram

    sill

    Sill (flattening value) of Semivariogram

    nugget

    Nugget (intercept value) of Semivariogram

    model

    NonLinearModelType model to be returned

    returns

    Semivariogram

  4. def apply(svParam: Array[Double], model: ModelType): Semivariogram
  5. def explicitModel(range: Double, sill: Double, nugget: Double, model: ModelType): (Double) ⇒ Double

    range

    Range of Semivariogram

    sill

    Sill (flattening value) of Semivariogram

    nugget

    Nugget (intercept value) of Semivariogram

    model

    ModelType input

    returns

    Semivariogram function

  6. def explicitModel(svParam: Array[Double], model: ModelType): (Double) ⇒ Double

    svParam

    Semivariogram parameters in Array format (range, sill, nugget) or (range, sill)

    model

    ModelType input

    returns

    Semivariogram function

  7. def explicitNuggetModel(range: Double, sill: Double, model: ModelType): (Double) ⇒ Double
  8. def explicitNuggetModel(svParam: Array[Double], model: ModelType): (Double) ⇒ Double
  9. def jacobianModel(variables: Array[Double], model: ModelType): (Double) ⇒ Array[Double]

    variables

    The (range, sill, nugget) variable's current value being used while optimizing the function parameters

    model

    The ModelType being fitted into

    returns

    https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant