c

geotrellis.vector.interpolation

LeastSquaresFittingProblem

abstract class LeastSquaresFittingProblem extends Serializable

Computes fitting of the given empirical semivariogram using a ModelType's function definitions valueFunc() and jacobianFunc()

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LeastSquaresFittingProblem
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LeastSquaresFittingProblem(x: Array[Double], y: Array[Double], start: Array[Double])

    x

    Empirical Semivariogram distance value

    y

    Empirical Semivariogram's corresponding variance values

    start

    Starting point for finding the optimization values of Semivariogram's parameters (range, sill, 0)

Abstract Value Members

  1. abstract def jacobianFunc(variables: Array[Double]): (Double) ⇒ Array[Double]

    Computes the differential values at the current point of Levenberg-Marquard optimization

  2. abstract def valueFunc(r: Double, s: Double, a: Double): (Double) ⇒ Double

    r

    Denotes current Range of Semivariogram while performing fitting optimization

    s

    Denotes current Sill of Semivariogram while performing fitting optimization

Concrete Value Members

  1. def optimum: Optimum
  2. def retMMF(): MultivariateMatrixFunction
  3. def retMVF(): MultivariateVectorFunction